TISA Status

D. Young, T. Wong, L. Chambers, K. Costulis NASA Langley Research Center

D. Doelling, D. Keyes, M. Nordeen AS&M

J. Stassi, C. Nguyen, R. Raju, E. Kizer, S. Sun-Mack SAIC

29th CERES Science Team Meeting Norfolk, Virginia November 17-18, 2003

Outline

- Data products update
- Improvements to GGEO for Terra
- First look at a year of global SRBAVG data

CERES Advanced TISA Processing

TISA Software Development Status FSW / SYN / AVG / ZAVG

- Software updated to include overlap hours
- Cloudy sky/No Aerosol Flux profile data added
- TRMM ADM types used to sort Terra FSW SW flux
- The HDF compression was added to AVG/SYN to reduce the output file size. A savings of approximately 70%
- 3-hourly integration algorithms implemented.

SYN Movie 10 Days of Hourly Synoptic Data

What's Next? FSW / SYN / AVG / ZAVG

- Product on hold emphasis on SRBAVG
- Run on Terra data
- Run latest version through SARB
- Produce AVG and compare with SRBAVG monthly means

CERES Advanced TISA Processing

TISA Software Development Status GGEO

- Calibration time series finalized
 - VIS from deep convective clouds
 - IR from ray-matched data (day/night effects removed)
- The GMS navigation errors corrected
- GEO-specific clear-sky albedo thresholds added
- Surface emissivity used for land IR thresholds (set for DAO)
- Hourly calibration tables added (Meteosat)
- Visible and IR histogram information produced for QC
- Cold Cloud and Noon Data collected for calibration QC
- QC Web pages modified
 - Improved interface
 - Improved
- GGEO subsystem updated for consistency with Clouds subsystem

TISA Data Product Status GGEO

- Over 2 Years tested at DAAC
 - Tests stability for operational processing
 - Provides data for calibration time series
- 2001 completed and used in Beta 2 SRBAVG
 - Calibration automated
- Cloud amounts compared with 1998 results

GGEO Calibration Techniques

- Ray-matched MODIS vs GEO radiance data
 - Ties calibration to well-calibrated MODIS data
- Deep convective cloud albedo
 - Used to get trends (not absolute calibration)
- Noon matching of GEO data at central longitudes
- Doelling to present results in Co-I report

Consistency of Calibration Methods

GEO Clear-sky Threshold Correction Objective

- MODIS clear-sky albedos are used in GEO cloud retrievals
 - Results in overestimate of daytime cloudiness over land
- Spectral differences result in differences in
 - Surface reflectivity
 - Atmospheric absorption
 - Rayleigh scattering
- Need to derive correction factors as a function of
 - GEO satellite
 - Surface vegetation type
 - Season

Method

- Use MODIS monthly start-up maps
 - Average from 10-minute to 1° resolution
- Compare with GEO data from January and June 2001
- GEO albedos derived using
 - Minimum values
 - A variety of directional models
- Derive GEO/MODIS albedo ratios after eliminating
 - Snow regions
 - High GEO standard deviations
- Average for each scene type & GEO satellite

GEO spectral response functions

June 2001

GEO Clear-Sky Albedo

MODIS Clear-Sky Albedo

Results for January 2001

	METEOSAT-7 Ocean	METEOSAT-7 Land	METEOSAT-7 Desert
Correction:	0.85	1.15	1.25
VIRS cloud fraction	0.66	0.54	0.06
GEO cloud fraction (uncorrected)	0.66	0.74	0.18
GEO cloud fraction (corrected)	0.68	0.62	0.10

GGEO Status Summary

- Calibration finalized
- Clear-sky threshold to be finalized this week
- Delivery soon

CERES Advanced TISA Processing

TISA Software Development Status SFC / SRBAVG

- 1 year of Beta 2 in archive
 - GGEO cal not final
 - old NB-BB
 - Edition 1 fluxes & clouds
- TRMM directional models used for Terra
 - TRMM ADM types were written onto Terra SFC FSW products
- The HDF compression was added (Saves ~70%)
- Final development:
 - New NB-BB
 - Nighttime interpolation

TOA Net Flux from Terra FM-1 2001

Total-sky TOA Net Flux From CERES Process TERRA_FM1 January 2001 SRBAVG

Processed: 2003/05/21 1-deg Equal Angle Nested Monthly Mean (Method A)

File: comp/CER_SRBAVG1_Terra-FM1-MODIS_Beta2_011020.200101

ERBElike - SRBAVG Seasonal Net TOA Flux

Global Annual (2001) Mean TOA All-sky Fluxes

	ERBElike	nonGEO	GEO
LW	238.7	238.2	237.5
SW	98.0	98.1	98.6
Net	4.6	6.5	5.0
Albedo	28.7%	28.7%	28.9%

Interannual Variation of Global Mean TOA All-sky Fluxes

	3/00 - 2/01	3/01 - 2/02	3/02 - 2/03
LW	238.6	238.7	239.3
SW	98.7	98.0	97.1
Net	4.0	4.7	4.9
Albedo	28.9%	28.7%	28.4%

ERBElike - SRBAVG Annual Net TOA Flux

ERBElike - SRBAVG Annual SW TOA Flux

ERBElike - SRBAVG Annual LW TOA Flux

ERBElike - SRBAVG Annual Night LW TOA Flux

ERBElike - SRBAVG Annual Day LW TOA Flux

LW Diurnal Range (Noon - Midnight) GEO April 2001

larc.nasa.gov/DaveY/Terra_FM1_200101_wt_new_GGEO/CER_SRBAVG1_Terra—FM1—MODIS_Beta1_011019.200104 Sun Nov

No −50 −38 −27 −16 −5 5 16 27 38 50 −−> (1)10epto & (2)Std Dev: Watts per square meter, (3)Num. Obs.: Unitless

Monthly Mean GEO-nonGEO Total-sky LW Flux Diurnal Range April 2001

larc.nasa.gov/DaveY/Terra_FM1_200101_wt_new_GGEO/CER_SRBAVG1_Terra—FM1—MODIS_Beta1_011019.200104 Sun Nov

No −50 −38 −27 −16 −5 5 16 27 38 50 −−> (1) № (2)Std Dev: Watts per square meter, (3) Num. Obs.: Unitless

GEO - nonGEO TOA LW Flux Difference Monthly Mean April 2001

larc.nasa.gov/DaveY/Terra_FM1_200101_wt_new_GGEO/CER_SRBAVG1_Terra—FM1-MODIS_Beta1_011019.200104 Wed Nov

No −10 −7 −5 −3 −1 1 3 5 7 10 −−> (1) № (2) Std Dev: Watts per square meter, (3) Num. Obs.: Unitless

Total-sky LW Flux (Sahara April 2001)

Global TOA LW Flux Comparison Beta 2 SRBAVG January-December 2001

238.7 W/m² 237.5 W/m² 238.2 W/m²

Global TOA SW Flux Comparison Beta 2 SRBAVG January-December 2001

98.6 W/m² 98.1 W/m²

Global TOA Net Flux Comparison Beta 2 SRBAVG January-December 2001

Summary of First Look at Annual Mean

- Global net 5 W/m² imbalance occurs in both ERBElike and SRBAVG products
- Error Budget

_	Ocean	Heat Storag	e 0.5 -	1.0 W/m ²
---	-------	--------------------	---------	----------------------

SW ADM errors0.5 W/m²

– LW ADM errors0.1 W/m²

SW TISA error 0.6 W/m²

LW TISA error0.1 W/m²

Solar Constant error 0.9 W/m²

CERES cal error 0.5 W/m²

• If all in same direction, possible total of 5.4 W/m²

Validation

- Solved time matching problem for surface comparisons
 - Improves clear-sky surface SW rms
- Initial Terra surface comparison with BSRN
 - Calibration in Beta SRBAVG causes overprediction of cloudiness.
 - Top priority after final calibration
- New cloud property validation set

SRBAVG DCSW vs. ARM SGP (uncorrected)

SRBAVG DCSW vs. ARM SGP (corrected)

CONUS Cloud Property Validation Data Set

- Data description
 - Derived from GOES data using CERES cloud algorithm
 - 42 32 N; 105 91 W (Includes ARM SGP)
 - Half-hourly resolution
- Half-hour resolution allows testing of interpolation
- Testing possible algorithm changes
 - Optical depth histogram equlization
 - Normalize night / day retrievals
 - Use daytime cloud emissivity at night

1.5

3.6

Optical Depth

8.8

21.5

GEO vs VISST Optical Depth

0.10

0.25

0.60

52.7

129.0

Future

- Goal: 3 years of validated SRBAVG by March STM
- Validation
 - SW integration test for snow
 - GEO calibration sensitivity for Terra
 - Terra surface flux comparison (BSRN and SRB)
 - Cloud interpolation over CONUS
 - March 2000 TRMM/Terra comparison

GEO

- Move to McIdas data
- Plan for 1-hourly GEO for reprocessing
- Extend calibration studies
- Narrowband Broadband improvement (Doelling)

Normalized VIS/BB Ratios for clear-sky ocean (various SZA)

Ratios are scene type and angle-specific

Details to follow from Doelling

Extras

Annual (2001) Mean TOA Fluxes

	ERBElike	nonGEO	GEO
LW	238.7	238.2	237.5
SW	98.0	98.1	98.6
Net	4.6	6.5	5.0
Albedo	28.7%	28.7%	28.9%
Clear LW	266.6	265.9	263.9
Clear SW	48.6	51.8	51.8
Clear Net	29.5	34.2	35.8
Clr Albedo	14.25%	15.2%	15.2%

GEO - nonGEO TOA SW Flux Difference Monthly Mean April 2001

larc.nasa.gov/DaveY/Terra_FM1_200101_wt_new_GGEO/CER_SRBAVG1_Terra—FM1-MODIS_Beta1_011019.200104 Wed Nov

No −20 −15 −11 −6 −2 2 6 11 15 20 −−> (1)10epto & (2)Std Dev: Watts per square meter, (3)Num. Obs.: Unitless

TRMM Monthly Mean GEO-nonGEO Total-sky LW Flux Diurnal Range

TOA LW Flux 2:30 - 9:30 GEO April 2001

larc.nasa.gov/DaveY/Terra_FM1_200101_wt_new_GGEO/CER_SRBAVG1_Terra—FM1—M0DIS_Beta1_011019.200104 Wed Nov

